Math 250A Lecture 10 Notes

Daniel Raban

September 28, 2017

1 Prime Ideals and Maximal Ideals

1.1 Fields and integral domains

Definition 1.1. A *field* is a commutative ring where all nonzero elements have multiplicative inverses.

Definition 1.2. An *integral domain* is a ring where ab = 0 implies that a = 0 or b = 0.

Proposition 1.1. All fields are integral domains.

Proof. Let R be a field. Then for $a, b \in R$,

$$ab = 0 \implies a^{-1}ab = a^{-1}0 \implies b = 0.$$

Definition 1.3. Let I be an ideal of R. I is called *maximal* if R/I is a field.

Definition 1.4. Let I be an ideal of R. I is called *prime* if R/I is an integral domain. Equivalently, I is prime if $ab \in I$ implies that $a \in I$ or $b \in I$.

Why are these definitions equivalent?

$$R/I \text{ is an integral domain } \iff [(a+I)(b+I) = I \implies a \in I \text{ or } b \in I]$$
$$\iff [ab+I = I \implies a \in I \text{ or } b \in I]$$
$$\iff [ab \in I \implies a \in I \text{ or } b \in I].$$

We can see by the previous proposition that all maximal ideals are prime.

Definition 1.5. An ideal $I \neq R$ is *maximal* if for any ideal $J, I \subseteq J$ implies that I = J or J = R.

Proposition 1.2. Let I be an ideal of a ring R. Then R/I is a field iff I is maximal.

Proof. Suppose I is maximal. Since $I \neq R$, $1 \notin I$, so R/I contains an element $1 + I \neq I$. Letting $x + I \in R/I$, note that I + Ax = R, so there exists some $y \in I$ and $a \in R$ such that y + ax = 1. Then ax + I = 1 + I, so (a + I) is the inverse of x + I in R/I. So R/I is a field.

Conversely, suppose R/I is a field. Then for $x \notin I$, there exists some $a \notin I$ such that ax + I = 1 + I. Then ax + y = 1 for some $y \in I$, so $(1) \subseteq Ax + I$, which makes Ax + I = R. This holds for all $x \notin I$, so I is maximal.

Example 1.1. Let $R = \mathbb{Z}$. The ideals are of the form (n) for n = 0, 1, 2, 3, ... The maximal ideals are (2), (3), (5), (7), ... The prime ideals are (0), (2), (3), (5), (7), ...

Example 1.2. Let $R = \mathbb{C}[x]$; this is a PID. The ideals are (f) for a polynomial f. The maximal ideals are (x - a) for $a \in \mathbb{C}$ (any polynomial f of degree > 1 factorizes as f = gh, so $(f) \subsetneq (g)$, making (f) not maximal). The prime ideals are (x - a) for $a \in \mathbb{C}$, and (0).

Example 1.3. Let $R = \mathbb{C}[x, y]$. The ideal (x, y) is maximal because $R/(x, y) = \mathbb{C}$, which is a field. The ideals (x - a, y - b) are also maximal. These are the only maximal ideals.¹ The prime ideals are (x - a, y - b), (0), and (f) if f is any irreducible polynomial; this is because $\mathbb{C}[x, y]/(f)$ is an integral domain because $\mathbb{C}[x, y]$ is a UFD.

1.2 Maximal ideals and Zorn's lemma

Definition 1.6. A partial order is a relation \leq on a set S such that for all $a, b, c \in S$

- 1. $a \leq a$ (reflexivity).
- 2. If $a \leq b$ and $b \leq a$, then a = b (antisymmetry).
- 3. If $a \leq b$ and $b \leq c$, then $a \leq c$ (transitivity).

Example 1.4. Let S be the set of subsets of some set T. The ordering \leq is inclusion.

Definition 1.7. Let S be a partially ordered set. A *totally ordered* subset T of S is a subset such that for all $a, b \in T$, $a \leq b$ or $b \leq a$.

Definition 1.8. Let S be a partially ordered set. An *upper bound* of a subset T is an element $a \in S$ such that $b \leq a$ for all $b \in T$.

Definition 1.9. Let S be a partially ordered set. An element $a \in S$ is maximal² if $a \leq b$ implies that b = a.

Lemma 1.1 (Zorn). Suppose S is a nonempty partially ordered set such that for any totally ordered subset of S, there is an upper bound. Then S has a maximal element.

¹See Hilbert's Nullstellensatz. This word means zero position theorem.

²You might think that maximal should mean that $b \leq a$ for all $b \in S$, but this is a very strong condition. This implies a unique maximal element, which is not true for our definition of maximality.

Proof. We will sketch a proof because a full proof requires some set theory. Suppose no maximal element exists; we will find a contradiction.

Step 1: Pick $s_0 \in S$ since S is nonempty. Then $\{s_0\}$ is totally ordered, so it has an upper bound s_1 . If s_0 is not maximal, then $s_1 > s_0$.

Step 2: Repeat this with $\{s_0, s_1\}$, which is totally ordered. And repeat this.

Step 3: We do this infinitely many times³, and find s_{ω} , which is an upper bound of $\{s_0, s_1, s_2, \ldots\}$.

Step 4. We find an s_{α} for every ordinal α . But the set of ordinals is a proper class, so it must be bigger than S since S is a set. So we have a contradiction.

Corollary 1.1. If I is an ideal of R with $I \neq R$, I is contained in some maximal ideal.

Proof. Look at the set S of ideals $\neq R$ containing I. It is partially ordered by \subseteq and is nonempty because it contains I. Now suppose I_{α} is a totally ordered set of ideals; then $\bigcup_{\alpha} I_{\alpha}$ is an ideal and is greater than I_{α} for each α . Why is this an ideal? The total ordering is key. If $a, b \in \bigcup_{\alpha} I_{\alpha}$, then $a \in I_{\alpha_1}$ and $b \in I_{\alpha_2}$; without loss of generality, $I_{\alpha_1} \subseteq I_{\alpha_2}$, so $a + b \in I_{\alpha_2}$. This is the upper bound needed to satisfy the conditions of Zorn's lemma. \Box

Remark 1.1. You may be wondering why we need Zorn's lemma. In general, there exist nonempty ordered sets with no maximal elements. For example, take the open unit interval, (0, 1).⁴

Corollary 1.2. The intersection of all prime ideals of a ring is the set of elements x with $x^n = 0$ for some n (called nilpotent).

Proof. Let \mathfrak{p} be a prime ideal. If $x^n = 0$, then $x^{n-1}x = x^n = 0 \in \mathfrak{p}$, so since \mathfrak{p} is prime, $x^{n-1} \in \mathfrak{p}$ or $x \in \mathfrak{p}$, and so on, so $x \in \mathfrak{p}$.

Suppose x is not nilpotent; we need to find a prime ideal P not containing x. Let $M = \{1, x, x^2, \ldots\}$, which doesn't contain 0 because x is not nilpotent. Let S be the set of ideals disjoint from M. S is partially ordered by inclusion. S is nonempty because $(0) \in S$. Any totally ordered subset $\{I_{\alpha}\}$ of S has an upper bound $\bigcup_{\alpha} I_{\alpha}$. So, by Zorn's lemma, S has a maximal element I; I is maximal in S, not a maximal ideal.

I is prime. Suppose $a, b \notin S$. Then (I, a) > I, so it contains an element of $M x^n = i_1 + sa$. Likewise, (I, b) contains an element of $M x^n = i_2 + tb$. So $i_1i_2 + i_2sa + i_1tb + stab = x^{m+n}$ is an element of M, and the first 3 terms on the left hand side are in I. So $ab \notin I$ because otherwise the right hand side of this equation would be an element of I, which is impossible because it is in M. So I is prime, as desired.

 $^{^{3}}$ Picking elements in this way requires the axiom of choice. As such, Zorn's lemma was somewhat controversial in the early 20th century.

⁴Assuming that ordered sets always have a maximal element has been the cause of numerous philosophical blunders over the years, such as some attempted proofs of the existence of a god.

2 Localization

2.1 What is localization?

The integers do not have division. This is inconvenient, so we construct the rational numbers $\mathbb{Q} = \{m/n : m, n \in \mathbb{Z}, n \neq 0\}$. \mathbb{Q} is a field.

More generally, suppose R is a ring and S is a subset of R. We find a new ring $R[S^{-1}]$ so that all elements of S have inverses. This is localization.

Example 2.1. If R is an integral domain and S is the set of nonzero elements of R, then $R[S^{-1}]$ is a quotient field of R.

2.2 Construction

We may as well assume $1 \in S$ and S is closed under multiplication. If a, b have inverses, then ab should, as well. First, Assume S has no zero divisors. We basically copy the construction of \mathbb{Q} from \mathbb{Z} .

Take all pairs (r, s) with $r \in R$ and $s \in S$. Call this r/s. We have an equivalence relation $r_1/s_1 \equiv r_2/s_2$ means $r_1s_2 = r_2s_1$. The subtle point of this construction is that we need to check that this equivalence relation is transitive.

We first assume that S has no zero divisors. Suppose $r_1/s_1 \equiv r_2/s_2$ and $r_2/s_2 \equiv r_3/s_3$. We have $r_1s_2 = r_2s_1$ and $r_2s_3 = r_3s_2$. So $r_1s_2s_3 = r_2s_1s_3 = s_1r_3s_2$. This makes $s_2(r_1s_3 = r_3s_1) = 0$, and since s_2 is not a zero divisor, $r_1s_3 = r_3s_1$; i.e. $r_1/s_1 \equiv r_3/s_3$. The remaining step is to check that the equivalence classes form a ring. We leave this as an exercise.

In this case, we have the map $R \to R[S^{-1}]$ sending $r \mapsto r/1$. This map is injective because it has trivial kernel; r/1 = 0/1 means $1r = 0 \cdot 1 = 0$, which makes r = 0.

What if S has zero divisors? Then $r_1/s_1 \equiv r_2/s_2$ is not an equivalence relation. So let I be the ideal of all elements with xs = 0 for some $s \in S$. Check that this is an ideal. Now form R/I, and let \bar{S} be the image of S in R/I. Then \bar{S} has no zero divisors in R/I, so we can form $(R/I)[\bar{S}^{-1}]$ as before.

So we get a ring $R[S^{-1}]$ with the following properties:

- 1. There is a homomorphism from $R \to R[S^{-1}]$.
- 2. The images of all elements of S are invertible in $R[S^{-1}]$.
- 3. $R[S^{-1}]$ is the universal ring with these properties.

The kernel of the map $R \to R[S^{-1}]$ is I, the set of elements killed by something in S. Then $r_1/s_1 \equiv r_2/s_2$ can be defined as $\exists s_3$ such that $s_3(r_1s_2 - r_2s_1) = 0$.

2.3 Examples

Why is localization called localization?

Example 2.2. Let $R = \mathbb{C}[x]$, the set of polynomial functions on \mathbb{C} . Suppose we want to examine $0 \in \mathbb{C}$. What do the functions near 0 look like? An example is the rational functions that are nonsingular at 0; this is an approximation to all holomorphic functions in a neighborhood of 0. This is equal to $R[S^{-1}]$, where S is the set of polynomials that are nonzero at 0. The map $R \to R[S^{-1}]$ is injective but not surjective.

Example 2.3. Let R be the set of continuous functions on \mathbb{R} . Focus on the point $0 \in \mathbb{R}$. Look at the germs, functions that are equivalent in a neighborhood of 0. The ring of germs is $R[S^{-1}]$, where S is the set of functions that are nonzero at 0. Here, the map $R \to R[S^{-1}]$ is surjective but not injective.

You may have noticed that in these two examples, S was the complement of a prime ideal. In general, if p is any prime ideal, then the complement of p is multiplicatively closed.

Example 2.4. Let $R = \mathbb{Z}$, and suppose we are interested in (2). Let $S = \mathbb{Z} \setminus (2)$, the odd numbers. So we get a ring $\mathbb{Z}_{(2)}$, the rationals a/b with b odd. In general, let $R_p = R[S^{-1}]$, where S is the complement of a prime ideal p. The units of $\mathbb{Z}_{(2)}$ are rationals of the form a, b with a, b odd. 2 is a prime element of $Z_{(2)}$. Anly element of $Z_{(2)}$ equals $2^n u$ for some unit u and a unique $n \in \mathbb{N}$. So this is a UFD with only one prime: 2. We see that localizing at 2 "kills off" all primes other than 2.