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1 Prime Ideals and Maximal Ideals

1.1 Fields and integral domains

Definition 1.1. A field is a commutative ring where all nonzero elements have multiplica-
tive inverses.

Definition 1.2. An integral domain is a ring where ab = 0 implies that a = 0 or b = 0.

Proposition 1.1. All fields are integral domains.

Proof. Let R be a field. Then for a, b ∈ R,

ab = 0 =⇒ a−1ab = a−10 =⇒ b = 0.

Definition 1.3. Let I be an ideal of R. I is called maximal if R/I is a field.

Definition 1.4. Let I be an ideal of R. I is called prime if R/I is an integral domain.
Equivalently, I is prime if ab ∈ I implies that a ∈ I or b ∈ I.

Why are these definitions equivalent?

R/I is an integral domain ⇐⇒ [(a+ I)(b+ I) = I =⇒ a ∈ I or b ∈ I]

⇐⇒ [ab+ I = I =⇒ a ∈ I or b ∈ I]

⇐⇒ [ab ∈ I =⇒ a ∈ I or b ∈ I].

We can see by the previous proposition that all maximal ideals are prime.

Definition 1.5. An ideal I 6= R is maximal if for any ideal J , I ⊆ J implies that I = J
or J = R.

Proposition 1.2. Let I be an ideal of a ring R. Then R/I is a field iff I is maximal.
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Proof. Suppose I is maximal. Since I 6= R, 1 /∈ I, so R/I contains an element 1 + I 6= I.
Letting x + I ∈ R/I, note that I + Ax = R, so there exists some y ∈ I and a ∈ R such
that y + ax = 1. Then ax+ I = 1 + I, so (a+ I) is the inverse of x+ I in R/I. So R/I is
a field.

Conversely, suppose R/I is a field. Then for x /∈ I, there exists some a /∈ I such that
ax+ I = 1+ I. Then ax+y = 1 for some y ∈ I, so (1) ⊆ Ax+ I, which makes Ax+ I = R.
This holds for all x /∈ I, so I is maximal.

Example 1.1. Let R = Z. The ideals are of the form (n) for n = 0, 1, 2, 3, . . . . The
maximal ideals are (2), (3), (5), (7), . . . . The prime ideals are (0), (2), (3), (5), (7), . . . .

Example 1.2. Let R = C[x]; this is a PID. The ideals are (f) for a polynomial f . The
maximal ideals are (x− a) for a ∈ C (any polynomial f of degree > 1 factorizes as f = gh,
so (f) ( (g), making (f) not maximal). The prime ideals are (x− a) for a ∈ C, and (0).

Example 1.3. Let R = C[x, y]. The ideal (x, y) is maximal because R/(x, y) = C, which
is a field. The ideals (x− a, y − b) are also maximal. These are the only maximal ideals.1

The prime ideals are (x− a, y − b), (0), and (f) if f is any irreducible polynomial; this is
because C[x, y]/(f) is an integral domain because C[x, y] is a UFD.

1.2 Maximal ideals and Zorn’s lemma

Definition 1.6. A partial order is a relation ≤ on a set S such that for all a, b, c ∈ S

1. a ≤ a (reflexivity).

2. If a ≤ b and b ≤ a, then a = b (antisymmetry).

3. If a ≤ b and b ≤ c, then a ≤ c (transitivity).

Example 1.4. Let S be the set of subsets of some set T . The ordering ≤ is inclusion.

Definition 1.7. Let S be a partially ordered set. A totally ordered subset T of S is a
subset such that for all a, b ∈ T , a ≤ b or b ≤ a.

Definition 1.8. Let S be a partially ordered set. An upper bound of a subset T is an
element a ∈ S such that b ≤ a for all b ∈ T .

Definition 1.9. Let S be a partially ordered set. An element a ∈ S is maximal2 if a ≤ b
implies that b = a.

Lemma 1.1 (Zorn). Suppose S is a nonempty partially ordered set such that for any totally
ordered subset of S, there is an upper bound. Then S has a maximal element.

1See Hilbert’s Nullstellensatz. This word means zero position theorem.
2You might think that maximal should mean that b ≤ a for all b ∈ S, but this is a very strong condition.

This implies a unique maximal element, which is not true for our definition of maximality.
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Proof. We will sketch a proof because a full proof requires some set theory. Suppose no
maximal element exists; we will find a contradiction.

Step 1: Pick s0 ∈ S since S is nonempty. Then {s0} is totally ordered, so it has an
upper bound s1. If s0 is not maximal, then s1 > s0.

Step 2: Repeat this with {s0, s1}, which is totally ordered. And repeat this.
Step 3: We do this infinitely many times3, and find sω, which is an upper bound of

{s0, s1, s2, . . .}.
Step 4. We find an sα for every ordinal α. But the set of ordinals is a proper class, so

it must be bigger than S since S is a set. So we have a contradiction.

Corollary 1.1. If I is an ideal of R with I 6= R, I is contained in some maximal ideal.

Proof. Look at the set S of ideals 6= R containing I. It is partially ordered by ⊆ and is
nonempty because it contains I. Now suppose Iα is a totally ordered set of ideals; then⋃
α Iα is an ideal and is greater than Iα for each α. Why is this an ideal? The total ordering

is key. If a, b ∈
⋃
α Iα, then a ∈ Iα1 and b ∈ Iα2 ; without loss of generality, Iα1 ⊆ Iα2 , so

a+ b ∈ Iα2 . This is the upper bound needed to satisfy the conditions of Zorn’s lemma.

Remark 1.1. You may be wondering why we need Zorn’s lemma. In general, there exist
nonempty ordered sets with no maximal elements. For example, take the open unit interval,
(0, 1).4

Corollary 1.2. The intersection of all prime ideals of a ring is the set of elements x with
xn = 0 for some n (called nilpotent).

Proof. Let p be a prime ideal. If xn = 0, then xn−1x = xn = 0 ∈ p, so since p is prime,
xn−1 ∈ p or x ∈ p, and so on, so x ∈ p.

Suppose x is not nilpotent; we need to find a prime ideal P not containing x. Let
M =

{
1, x, x2, . . .

}
, which doesn’t contain 0 because x is not nilpotent. Let S be the set of

ideals disjoint from M . S is partially ordered by inclusion. S is nonempty because (0) ∈ S.
Any totally ordered subset {Iα} of S has an upper bound

⋃
α Iα. So, by Zorn’s lemma, S

has a maximal element I; I is maximal in S, not a maximal ideal.
I is prime. Suppose a, b /∈ S. Then (I, a) > I, so it contains an element of M xn = i1 +

sa. Likewise, (I, b) contains an element of M xn = i2+tb. So i1i2+i2sa+i1tb+stab = xm+n

is an element of M , and the first 3 terms on the left hand side are in I. So ab /∈ I because
otherwise the right hand side of this equation would be an element of I, which is impossible
because it is in M . So I is prime, as desired.

3Picking elements in this way requires the axiom of choice. As such, Zorn’s lemma was somewhat
controversial in the early 20th century.

4Assuming that ordered sets always have a maximal element has been the cause of numerous philosophical
blunders over the years, such as some attempted proofs of the existence of a god.
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2 Localization

2.1 What is localization?

The integers do not have division. This is inconvenient, so we construct the rational
numbers Q = {m/n : m,n ∈ Z, n 6= 0}. Q is a field.

More generally, suppose R is a ring and S is a subset of R. We find a new ring R[S−1]
so that all elements of S have inverses. This is localization.

Example 2.1. If R is an integral domain and S is the set of nonzero elements of R, then
R[S−1] is a quotient field of R.

2.2 Construction

We may as well assume 1 ∈ S and S is closed under multiplication. If a, b have inverses,
then ab should, as well. First, Assume S has no zero divisors. We basically copy the
construction of Q from Z.

Take all pairs (r, s) with r ∈ R and s ∈ S. Call this r/s. We have an equivalence
relation r1/s1 ≡ r2/s2 means r1s2 = r2s1. The subtle point of this construction is that we
need to check that this equivalence relation is transitive.

We first assume that S has no zero divisors. Suppose r1/s1 ≡ r2/s2 and r2/s2 ≡ r3/s3.
We have r1s2 = r2s1 and r2s3 = r3s2. So r1s2s3 = r2s1s3 = s1r3s2. This makes s2(r1s3 =
r3s1) = 0, and since s2 is not a zero divisor, r1s3 = r3s1; i.e. r1/s1 ≡ r3/s3. The remaining
step is to check that the equivalence classes form a ring. We leave this as an exercise.

In this case, we have the map R → R[S−1] sending r 7→ r/1. This map is injective
because it has trivial kernel; r/1 = 0/1 means 1r = 0 · 1 = 0, which makes r = 0.

What if S has zero divisors? Then r1/s1 ≡ r2/s2 is not an equivalence relation. So let
I be the ideal of all elements with xs = 0 for some s ∈ S. Check that this is an ideal. Now
form R/I, and let S̄ be the image of S in R/I. Then S̄ has no zero divisors in R/I, so we
can form (R/I)[S̄−1] as before.

So we get a ring R[S−1] with the following properties:

1. There is a homomorphism from R→ R[S−1].

2. The images of all elements of S are invertible in R[S−1].

3. R[S−1] is the universal ring with these properties.

R R[S−1]s

X

The kernel of the map R → R[S−1] is I, the set of elements killed by something in S.
Then r1/s1 ≡ r2/s2 can be defined as ∃s3 such that s3(r1s2 − r2s1) = 0.
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2.3 Examples

Why is localization called localization?

Example 2.2. Let R = C[x], the set of polynomial functions on C. Suppose we want
to examine 0 ∈ C. What do the functions near 0 look like? An example is the rational
functions that are nonsingular at 0; this is an approximation to all holomorphic functions
in a neighborhood of 0. This is equal to R[S−1], where S is the set of polynomials that are
nonzero at 0. The map R→ R[S−1] is injective but not surjective.

Example 2.3. Let R be the set of continuous functions on R. Focus on the point 0 ∈ R.
Look at the germs, functions that are equivalent in a neighborhood of 0. The ring of germs
is R[S−1], where S is the set of functions that are nonzero at 0. Here, the map R→ R[S−1]
is surjective but not injective.

You may have noticed that in these two examples, S was the complement of a prime
ideal. In general, if p is any prime ideal, then the complement of p is multiplicatively
closed.

Example 2.4. Let R = Z, and suppose we are interested in (2). Let S = Z \ (2), the odd
numbers. So we get a ring Z(2), the rationals a/b with b odd. In general, let Rp = R[S−1],
where S is the complement of a prime ideal p. The units of Z(2) are rationals of the form
a, b with a, b odd. 2 is a prime element of Z(2). Anly element of Z(2) equals 2nu for some
unit u and a unique n ∈ N. So this is a UFD with only one prime: 2. We see that localizing
at 2 “kills off” all primes other than 2.
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